Copied to
clipboard

G = C11xC8:C22order 352 = 25·11

Direct product of C11 and C8:C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C11xC8:C22, D8:2C22, C88:7C22, C44.63D4, SD16:1C22, M4(2):1C22, C44.48C23, C8:(C2xC22), C4oD4:2C22, D4:2(C2xC22), (C11xD8):6C2, (C2xD4):5C22, Q8:2(C2xC22), (D4xC22):14C2, (C2xC22).24D4, C22.78(C2xD4), C4.14(D4xC11), C2.15(D4xC22), (C11xSD16):5C2, C4.5(C22xC22), C22.5(D4xC11), (D4xC11):11C22, (C11xM4(2)):5C2, (C2xC44).69C22, (Q8xC11):10C22, (C11xC4oD4):7C2, (C2xC4).10(C2xC22), SmallGroup(352,171)

Series: Derived Chief Lower central Upper central

C1C4 — C11xC8:C22
C1C2C4C44D4xC11C11xD8 — C11xC8:C22
C1C2C4 — C11xC8:C22
C1C22C2xC44 — C11xC8:C22

Generators and relations for C11xC8:C22
 G = < a,b,c,d | a11=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 116 in 68 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2xC4, C2xC4, D4, D4, D4, Q8, C23, C11, M4(2), D8, SD16, C2xD4, C4oD4, C22, C22, C8:C22, C44, C44, C2xC22, C2xC22, C88, C2xC44, C2xC44, D4xC11, D4xC11, D4xC11, Q8xC11, C22xC22, C11xM4(2), C11xD8, C11xSD16, D4xC22, C11xC4oD4, C11xC8:C22
Quotients: C1, C2, C22, D4, C23, C11, C2xD4, C22, C8:C22, C2xC22, D4xC11, C22xC22, D4xC22, C11xC8:C22

Smallest permutation representation of C11xC8:C22
On 88 points
Generators in S88
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 79 75 15 61 40 54 30)(2 80 76 16 62 41 55 31)(3 81 77 17 63 42 45 32)(4 82 67 18 64 43 46 33)(5 83 68 19 65 44 47 23)(6 84 69 20 66 34 48 24)(7 85 70 21 56 35 49 25)(8 86 71 22 57 36 50 26)(9 87 72 12 58 37 51 27)(10 88 73 13 59 38 52 28)(11 78 74 14 60 39 53 29)
(12 87)(13 88)(14 78)(15 79)(16 80)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 44)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 41)(32 42)(33 43)(45 77)(46 67)(47 68)(48 69)(49 70)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)
(12 27)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 23)(20 24)(21 25)(22 26)(34 84)(35 85)(36 86)(37 87)(38 88)(39 78)(40 79)(41 80)(42 81)(43 82)(44 83)

G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,79,75,15,61,40,54,30)(2,80,76,16,62,41,55,31)(3,81,77,17,63,42,45,32)(4,82,67,18,64,43,46,33)(5,83,68,19,65,44,47,23)(6,84,69,20,66,34,48,24)(7,85,70,21,56,35,49,25)(8,86,71,22,57,36,50,26)(9,87,72,12,58,37,51,27)(10,88,73,13,59,38,52,28)(11,78,74,14,60,39,53,29), (12,87)(13,88)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,44)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(45,77)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76), (12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,23)(20,24)(21,25)(22,26)(34,84)(35,85)(36,86)(37,87)(38,88)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,79,75,15,61,40,54,30)(2,80,76,16,62,41,55,31)(3,81,77,17,63,42,45,32)(4,82,67,18,64,43,46,33)(5,83,68,19,65,44,47,23)(6,84,69,20,66,34,48,24)(7,85,70,21,56,35,49,25)(8,86,71,22,57,36,50,26)(9,87,72,12,58,37,51,27)(10,88,73,13,59,38,52,28)(11,78,74,14,60,39,53,29), (12,87)(13,88)(14,78)(15,79)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,44)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,41)(32,42)(33,43)(45,77)(46,67)(47,68)(48,69)(49,70)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76), (12,27)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,23)(20,24)(21,25)(22,26)(34,84)(35,85)(36,86)(37,87)(38,88)(39,78)(40,79)(41,80)(42,81)(43,82)(44,83) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,79,75,15,61,40,54,30),(2,80,76,16,62,41,55,31),(3,81,77,17,63,42,45,32),(4,82,67,18,64,43,46,33),(5,83,68,19,65,44,47,23),(6,84,69,20,66,34,48,24),(7,85,70,21,56,35,49,25),(8,86,71,22,57,36,50,26),(9,87,72,12,58,37,51,27),(10,88,73,13,59,38,52,28),(11,78,74,14,60,39,53,29)], [(12,87),(13,88),(14,78),(15,79),(16,80),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,44),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,41),(32,42),(33,43),(45,77),(46,67),(47,68),(48,69),(49,70),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76)], [(12,27),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,23),(20,24),(21,25),(22,26),(34,84),(35,85),(36,86),(37,87),(38,88),(39,78),(40,79),(41,80),(42,81),(43,82),(44,83)]])

121 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B11A···11J22A···22J22K···22T22U···22AX44A···44T44U···44AD88A···88T
order1222224448811···1122···2222···2222···2244···4444···4488···88
size112444224441···11···12···24···42···24···44···4

121 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C11C22C22C22C22C22D4D4D4xC11D4xC11C8:C22C11xC8:C22
kernelC11xC8:C22C11xM4(2)C11xD8C11xSD16D4xC22C11xC4oD4C8:C22M4(2)D8SD16C2xD4C4oD4C44C2xC22C4C22C11C1
# reps112211101020201010111010110

Matrix representation of C11xC8:C22 in GL4(F89) generated by

39000
03900
00390
00039
,
0010
00088
0100
1000
,
1000
08800
00088
00880
,
1000
0100
00880
00088
G:=sub<GL(4,GF(89))| [39,0,0,0,0,39,0,0,0,0,39,0,0,0,0,39],[0,0,0,1,0,0,1,0,1,0,0,0,0,88,0,0],[1,0,0,0,0,88,0,0,0,0,0,88,0,0,88,0],[1,0,0,0,0,1,0,0,0,0,88,0,0,0,0,88] >;

C11xC8:C22 in GAP, Magma, Sage, TeX

C_{11}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C11xC8:C2^2");
// GroupNames label

G:=SmallGroup(352,171);
// by ID

G=gap.SmallGroup(352,171);
# by ID

G:=PCGroup([6,-2,-2,-2,-11,-2,-2,1081,3242,7924,3970,88]);
// Polycyclic

G:=Group<a,b,c,d|a^11=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<